
SSC98-I-7

The Implementation of Satellite Attitude Control System Software Using

Object Oriented Design /_,,

W. Mark Reid

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Williarn.M.Reid. I @gsfc.nasa.gov 301-286-6088

"17,"

William Hansell, Tom Phillips

the Hammers Company, Greenbelt, MD 20771

Abstract. NASA established the Small Explorer (SMEX) program in 1988 to provide frequent

opportunities for highly focused and relatively inexpensive space science missions. The SMEX

program has produced five satellites, three of which have been successfully launched. The

remaining two spacecraft are scheduled for launch within the coming year. NASA has recently

developed a prototype for the next generation Small Explorer spacecraft (SMEX-Lite). This paper

describes the object-oriented design (OOD) of the SMEX-Lite Attitude Control System (ACS)

software. The SMEX-Lite ACS is three-axis controlled and is capable of performing sub-arc-

minute pointing. This paper first describes high level requirements governing the SMEX-Lite ACS

software architecture. Next, the context in which the software resides is explained. The paper

describes the principles of encapsulation, inheritance, and polymorphism with respect to the

implementation of an ACS software system. This paper will also discuss the design of several

ACS software components. Specifically, object-oriented designs are presented for sensor data

processing, attitude determination, attitude control, and failure detection. Finally, this paper will

address the establishment of the ACS Foundation Class (AFC) Library. The AFC is a large

software repository, requiring a minimal amount of code modifications to produce ACS software

for future projects.

ACS

AC

AFC

AIAA

AM

BC

BMC

C&DH

CI

COMM

CSS

DS

DSS

EDAC

FAST

FDH

Acronyms

Attitude Control System

ACS Control (software task)
ACS Foundation Class

American Institute of Aeronautics

and Astronautics

ACS Models (software task)
MIL-STD- 1553B Bus Controller

Bulk Memory Card

Command and Data Handling

Command Ingest (software task)
Communications

Coarse Sun Sensor

Data Storage (software task)

Digital Sun Sensor
Error Detection and Correction

Fast Auroral Snapshot Explorer

Failure Detection and Handling

FOV

GPS

HK

IC

I/F

IRWA

LC

MIL-STD

MTB

NASA

OOD

PCI

PROM

RT

SAMPEX

SC

Field of View

Global Positioning System

Housekeeping (software task)

Instrument Control (software task)
Interface

Integrated Reaction Wheel

Assembly

Limit Checker (software task)

Military Standard

Magnetic Torquer Bar

National Aeronautics and Space

Administration

Object-Oriented Design

Peripheral Component Interconnect

Programmable Read Only Memory
MIL-STD- 1553B Remote Terminal

Solar Anomalous and

Magnetospheric Particle Explorer

Stored Command (software task)

Mark Reid 12th AIAA/USU Conference on Small Satellites

S/C
SFP
SH
SMEX
SWAS

TAM
TO
TRACE

TRMM

WAES
WIRE
RXTE
ZSP

Spacecraft
SMEX-Lite Flight Processor
Scheduler(softwaretask)
SmallExplorer
SubmillimeterWaveAstronomy
Satellite
Three-AxisMagnetometer
TelemetryOutput(softwaretask)
TransitionRegionandCoronal
Explorer
TropicalRainfall Measurement
Mission
Wide AngleEarthSensor
Wide-FieldInfraredExplorer
RossiX-RayTiming Explorer
ZenithSunPoint

Introduction

NASA's Small Explorer (SMEX) program

builds small, relatively inexpensive spacecraft.

These spacecraft provide opportunities for

performing highly focused space science. The

typical SMEX spacecraft has a mass of

approximately 180 to 250 kg. The typical

development schedule for each SMEX

spacecraft has been three years from start to

launch. The SMEX program has produced five
satellites: Solar Anomalous and

Magnetospheric Particle Explorer (SAMPEX),

Fast Auroral Snapshot Explorer (FAST),

Submillimeter Wave Astronomy Satellite

(SWAS), Transition Region and Coronal

Explorer (TRACE) and Wide-Field Infrared

Explorer (WIRE). SAMPEX, FAST and
TRACE are on-orbit. WIRE is scheduled for

launch in September of 1998, and SWAS is

scheduled for launch in January of 1999. In

each of these missions, the Attitude Control

System (ACS) software was written using a

modular procedural design.

The SMEX program is now looking to the

future with the development of the next

generation SMEX spacecraft bus known as

SMEX-Lite. Current program goals reduce

spacecraft development time as well as

development costs, while maintaining mission

reliability and enhancing performance. To

accomplish these goals, there is a heavy

reliance on flight software and software reuse.

To obtain increased reuse of the flight

software, an object-oriented design approach

was taken.

This paper is principally concerned with the

design and development of the ACS flight

software. This design parallels the component

oriented "plug-and-play" architecture of the

spacecraft, allowing increased flexibility for

future missions. This paper will provide details

of the SMEX-Lite ACS software design,

demonstrating its functionality and flexibility.

Additionally the paper will show how the
establishment of an ACS Foundation Class

library will provide increased reuse, for

SMEX-Lite as well as other NASA programs.

SMEX-Lite Architecture

The SMEX-Lite spacecraft was designed and

developed to have a "plug-and-play"

architecture. This allows components to be

added or removed as required for a specific

science mission, with little redesign. The

entire spacecraft has been designed to have

independent components or subsystems, as

indicated in Figure 1 below.

COMPUTATION

Figure 1" SMEX-Lite Spacecraft

Mark Reid 12 th AIAA/USU Conference on Small Satellites

The central spacecraft computer for SMEX-

Lite is the Computation Hub. Various

spacecraft components interface with the

Computation Hub via a MIL-STD-1553B data

bus. Figure 2 provides a high level design of

the SMEX-Lite ACS system. This figure

shows the components that are supported in the

current SMEX-Lite design and indicates how

the various ACS components communicate

over the bus. Additional components can be

added to support specific future mission

requirements.

Integrated Reaction Wheel Assemblies. The

current SMEX-Lite ACS system supports three

Integrated Reaction Wheel Assemblies

(IRWAs). Each IRWA is a completely self-

contained assembly, containing flywheel,

power electronics, tachometer, and MIL-STD-
1553B interface. Each IRWA acts as both a

sensor and an actuator. The ACS software uses

tachometer information provided by each

IRWA to determine the wheel's speed or

momentum. This information can then be used

to derive changes in spacecraft body rates.

Similarly, if a change in spacecraft attitude is

required, commands are sent to the IRWAs to

modify their spin rates, causing the spacecraft

body to react. If a fourth IRWA is required, it

can simply be added to the MIL-STD-1553B

data bus with little changes to the existing

spacecraft hardware. Only the ACS software

within the Computation Hub would need to be

modified.

Utility Node. The SMEX-Lite ACS system

also supports multiple sensors through an

electronics box known as the Utility Node.

The Utility Node provides the interface
between these sensors and the MIL-STD-

1553B. The SMEX-Lite implementation of the

Utility Node provides interfaces for six Coarse

Sun Sensors (CSSs), one Digital Sun Sensor

(DSS), a Three-Axis Magnetometer (TAM),

and an Earth Sensor. Additionally, the Utility

Node supports actuators. For SMEX-Lite, it

Computation Hub

SFP
RAD60_ Processor

25MHz - 27MIPS

64KB SUROM

4MB SRAM

IMB EEPROM (BOOT)

4HS Serial Channels

BMC

200 MB Bulk Memory

EDAC

I MB EEPROM(NORMAL]

4MB SRAM

1553 SUMMIT

COMM I/F

Uplink/Downlink

MET Timer

Pegasus Uan I/F

1553B
A/B Bus

..... Indicates Mission Dependent Optional Item

Utility Node

W_odes

i I
............. i _arthSensor 2axes) i

I

J Digital Sun Sensor (2 axes) I

IMJgnet_t*rI3_s)]

................ I" i

fStar : [GPS : fHorizon i

_jTracker , k __e_nsff__rs__', I•

i i i Addition al_A_ttitude Sensors !

Figure 2: SMEX-Lite ACS System Design

Mark Reid 12'h AIAA/USU Conference on Small Satellites

provides an interface for three Magnetic
Torquer Bars (MTBs). The Utility Node also

supports expansion if additional sensors or

actuators are required.

Coarse Sun Sensors. The six CSSs are

typically mounted in pairs on each of the

spacecraft's primary axes to provide full sky

coverage. These sensors, which are supplied

by Adcole, each have a +-85 degree field of

view (FOV). I The CSSs are analog devices

providing eclipse detection and a measure of

the sun's intensity. The ACS software uses this
coarse sun information for initial sun

acquisition control and for attitude
determination in science modes.

Digital Sun Sensor. The DSS, which is also

supplied by Adcole, has a +- 64 degree FOV

and a resolution of 0.5 degree. 2 It is typically

mounted on the sun pointing side of the

spacecraft and provides a more precisely

measured sun vector for sun acquisition control
and attitude determination in science modes.

The ACS software automatically switches to

using the DSS once the Sun is in the DSS
FOV.

Three Axis Magnetometer. The TAM

provides a measure of the earth's magnetic field

vector at the spacecraft. The magnetic field

vector is used by all control modes. An
additional ACS control mode is used to

perform an on-orbit calibration of the

magnetometer. This control mode sends
commands to the MTBs and measures the

effects on the magnetic field readings. It then

computes a magnetic compensation matrix,
which is used to remove these effects.

developed for the WIRE mission. The baseline

SMEX-Lite ACS software has no requirements

for using the WAES. It was decided, therefore,

not to implement the WAES in the software.

However, the object-oriented design of the

ACS software greatly simplifies the addition of

the WAES for future projects.

Magnetic Torquer Bars. MTBs are mounted

along each spacecraft body axis. The MTBs

provide rate damping and sun pointing control

during initial sun acquisition. They are also

used for momentum unloading in science

pointing modes. The MTBs supported during

the SMEX-Lite prototype testing have a range

of +- 60 A-m 2, corresponding to the Ithaco

Torque Rods used in earlier SMEX missions.

Other Attitude Sensors. Additional sensors

may be added to the SMEX-Lite system as

required. The baseline SMEX-Lite software

provides support for a gyro package co'ntaining

three two-axis gyros. These are mounted

parallel to each spacecraft body axis, and

provide a completely redundant configuration.

The gyro data is used to measure spacecraft

body rates. This information is used for

spacecraft attitude determination in science

pointing modes. The gyros used in prior
SMEX missions are Bell Textron tuned

restraint inertial gyros. It is anticipated that

these gyros will have a drift of 0.6 deg/hr and
noise of less than 4.5 arcsec/sec. 3 If additional

sensors such as a Star Tracker, GPS receiver,

or Horizon sensor are required, the system is

designed to allow these sensors to be inserted

with minimal rework of the existing design.

ACS Software Context

Earth Sensor. The Earth Sensor is supported

only by the Utility Node hardware. The Utility

Node provides an interface for three signals,

corresponding to the outputs of a Wide Angle

Earth Sensor (WAES). The WAES, which is

supplied by the Servo Coporation, was

The SMEX-Lite Flight Processor (SFP), which

is located within the spacecraft's Computation

Hub, supports multitasking software running

under VxWorks. It operates in one of two

modes, Boot Mode and Normal Mode. Upon

power up, the SFP begins executing in Boot

Mark Reid 12thAIAA/USU Conference on Small Satellites

Mode. In this mode, the processor loads tasks

from Programmable Read Only Memory

(PROM). These tasks provide the basic

command, telemetry, software management,

and health and safety monitoring required to

maintain spacecraft safety. With the absence

of any secondary processor, it is required that
the SFP have an ACS task in Boot Mode that

performs initial sun acquisition and safehold

functions. This task uses data from the Utility

Node and the IRWAs to command the IRWAs

and MTBS, pointing the solar arrays toward the

sun and damping the spacecraft body rates.

The Boot Mode task also performs some

failure detection and handling (FDH). This

FDH includes checking the spacecraft sun

angle, spacecraft body rates and wheel power

status. The Boot Mode ACS allows only

minimal commanding and generates telemetry

necessary for spacecraft health and safety

checks. The initial Boot Mode software may

not be modified on orbit.

After initial acquisition, the spacecraft is

commanded into Normal Mode. Figure 3

details the Normal Mode ACS software

context. The Normal Mode ACS software

consists of two tasks, the ACS Control (AC)

task and the ACS Models (AM) task.

Additional ACS software resides in the system

which is used by both AC and AM. This

includes math routines and other shared utility

functions.

The AM Task. The ACS Models task is

responsible for propagating the orbit ephemeris

models. The AM task produces inertial vectors,
which are sent to the AC task at a 1Hz rate.

These include a Solar Inertial Vector, Magnetic

Field Inertial Vector, Spacecraft Position

Vector, and Spacecraft Velocity Vector.

The AC Task. The main software task for the

ACS is the AC task. It receives sensor data

from the hardware, processes the data, and

generates the actuator commands to perform

active spacecraft control. AC has important

Utility
Node

i.
i.

Reaction ._

Wheels

Sensor Data

MTB Cmds

S/C Time

Wheel data

AC

Wheel commands

Sensor Data

Config Cmds

Ground Cmds Housekeeping
Stored Cmds Packet

Other SC/CI
Sensors

AM

Solar Inertial Vector

Mag. Field Inertial Vector
Orbit Position Inertial

Orbit Velocity Inertial

AC S Telemetry "I_Q

Housekeeping
Pkt Request

HK

Figure 3: SMEX-Lite Normal Mode ACS Software Context

Mark Reid 12thAIAA/USU Conference on Small Satellites

interfaces with several additional Command

and Data Handling (C&DH) tasks. The

Scheduler task (SH) provides a wake-up packet

to AC at the desired execution frequency. The

baseline execution frequency for SMEX-Lite is

10 Hz. The Stored Command (SC) and

Command Ingest (CI) tasks route stored

sequences of commands or ground commands

to AC. The Housekeeping (HK) task monitors

AC's health, while the Telemetry Output (TO)

and Data Storage (DS) tasks route telemetry

from the AC task to the ground and bulk

memory. 4 The Limit Checker (LC) task

provides additional monitoring of the AC task's

telemetry. This task is used to place the

spacecraft into a safe configuration if serious
limit violations occur.

SMEX-Lite ACS Software Design

Written in C++, the SMEX-Lite ACS software

takes advantage of three important concepts of

object-oriented programming. They are

encapsulation, inheritance, and polymorphism.

These OOD principles provide a framework for
common software interfaces and increase

software integrity and reuse. Four areas of the

SMEX-Lite ACS software, which make use of

these design principles, are Sensor Data

Processing, Attitude Determination, Attitude

Control, and Failure Detection and Handling

(FDH).

Encapsulation. A C++ class encapsulates

information by bundling an object's attributes

(data) with its methods (functions) and treating

them as a single entity. This principle is also

often referred to as "information hiding" and

protects the integrity of the data. 5 Each

SMEX-Lite component has been designed as

an independent, encapsulated object. The

benefit of this encapsulation is that the object

will maintain its own data, perform its own

calculations, and return its product through a

standard interface. Other objects will only

have access to member data through specific

methods, making the external interface
standard and streamlined. Another benefit of

this encapsulation is that each of the

components accepts all of their required data in

the form of parameters, making them

independent of the system as a whole for their

information. This is a break with past SMEX

implementations of space flight software,

where data was maintained in global structures

and each component had to be totally aware of

the structure and naming.

Inheritance. Object-oriented programming

also provides a mechanism for abstracting data

that is common to various classes or objects.

This concept, known as class inheritance,
allows for derived classes to use data and

operations that have been previously defined in

a base class. 6 The basic design of the SMEX

Lite software was to ensure that all common

elements of a hierarchy were well abstracted,

leaving only the most specific and unique

attributes to the concrete instantiation. Any

new implementations of components will

require coding only the most specific details

relating to the hardware or algorithm.

Polymorphism. The third Object-oriented

design principle that influenced the SMEX-Lite

ACS software is polymorphism. This principle

allows objects from a variety of classes to

respond to the same message. The message's

receiver is determined dynamically at runtime. 7

The SMEX-Lite software, although not truly

polymorphic, was designed with this principle

in mind. Through overloading methods, the
software allows for a common interface to all

objects with similar attributes. The SMEX-

Lite software provides methods with the same

name within multiple classes or objects. These

methods perform different operations based on

which object is being referenced. For example

both the CSS and DSS objects provide a

method for computing the sun vector from the

raw data. The actual calculations required for

each sensor, however, are very different.

Mark Reid 12thAIAA/USU Conference on Small Satellites

Sensor Data Processing. The area of the

SMEX-Lite software that most clearly takes

advantage of the principle of inheritance is

sensor data processing. The sensor data

processing software performs the function of

converting raw data from the sensor hardware

into engineering data used for spacecraft
attitude determination and control. This

software is used in both the spacecraft Boot

Mode and Normal Mode.

Figure 4 shows how the many sensor objects

are related through an inheritance hierarchy to
an abstract base class cSensor. The cSensor

base class provides all of the attributes and
methods that are common to all sensors. For

SMEX-Lite all sensors are given the attributes

of a power state, online state and a flag

indicating data validity. Any inherited sensor
class will have these attributes as well as

methods for retrieving or setting these data
items.

Figure 4: Sensor Classes

The next level of abstraction shows that there

are various types of sensors. For example all
sun sensors which are derived from the

cSunSensor class will have the attributes of an

illumination flag, alignment matrix, sun vector

(in S/C body frame) and a sun angle.

Additionally any derived class will have

methods for setting, referencing, or computing
these data items.

At the most concrete level, specific details of

an individual sensor are defined. For any CSS

object which is instantiated using the

cAdcoleCSS class, these specific attributes

include scale factors, biases, voltage thresholds

(required for illumination) and a maximum

voltage level. The CSS object would also

contain the specific method for computing

engineering data from the raw data input.

Similarly, any DSS object would have the

attributes and methods specific to a DSS.
These include X-axis and Z-axis scale factors

and biases, DSS test threshold, and head

identifier. It would also contain the specific

routine for computing engineering data.

This same level of abstraction was placed into

each of the derived sensor classes, even though

most abstract sensor classes are used by only

one specific sensor type. For example, there is

an abstract class for wheel sensors even though

SMEX-Lite has only one type of reaction

wheel, the IRWA. This abstract wheel class

acts as a placeholder for wheels that may be

added on future spacecraft. It was assumed

that all wheels would have some common

attributes such as a wheel speed, and would

also have a method for retrieving this data.

Placing this framework into the SMEX-Lite

software increases the reusability of this

software for other NASA projects.

Attitude Determination. SMEX-Lite

performs attitude determination as part of the
Normal Mode ACS task. The Attitude

Determination subsystem was designed around

a core 'processor' object that communicates

with 'attitude determination' objects. The

processor determines when an attitude

determination object will be called and what

variables it will receive. All interfaces to the

rest of the system are sent through the

processor object. The data that an object

requires to perform computations is either

stored locally within the object or sent to it

from the processor as a parameter. There is no

Mark Reid 12thAIAA/USU Conference on Small Satellites

global data to be accessed. This greatly
enhances system reliability since various
methods can be totally isolated and tested
independently.

All of the attitude determination objects
operatewith the sameinterface; they receive
their data either in a constructor or as an
argument,and their data is returnedthrougha
common function name. For example, all
objects execute using a run() method and
output data with a ref0 method. This
consistentobject interfacemakes it very easy
to reusethesoftwarein differentprojects.

All objects that have the same function are
derived from the samebaseclass,asshownin
figure 5. This meansthat the data elements
that each of the objects inherits are the same
for eachof the concreteclasses. This greatly
simplifies codedevelopmentsinceit is known
what will be retumed and what the variables
arecalled. For example,a specific filter class
will inherit a datavalid flag and a vectordata
type. Also included in the inheritance are
memberfunctions or methodsby which these
variablesareextracted. When theprogrammer
createsa new filter classfrom this classmuch
of the softwareis alreadyimplemented. Only
the specific processingfor the new classmust
becoded.

Figure 5: Attitude Determination Classes

The Attitude Determination software was

designed as a set of autonomous building

blocks, each being able to function as an

independent unit. Each of the attitude

determination objects could be placed into a

different application with little coding effort

and the proper results would be returned.

cTriad is derived from cAttitudeDetermination,

which maintains the attitude solution and

methods for extracting either a Quaternion or a
Direction Cosine Matrix. The cTriad class will

take in two pairs of vectors (inertial frame,

body frame) and compute the estimated
attitude.

The cGyroPropagation class is derived from
cAttitudeDetermination and cCovariance. The

Gyro Propagation class will take in the delta

angle from the Gyro Processor along with the

current quaternion and the current error

(covariance) and compute a new attitude and

error. Again the methods for extracting the

attitude and error (covariance) are contained in

the base classes.

cMagnetometerFilter, cDigitalSunSensorFilter,
and cCoarseSunSensorFilter all take in the

same arguments, the inertial vector from the

Models task, the measured vector, the current

attitude, and the current error. The error is

updated by the Kalman Filter and applied to the

attitude to get a new solution.

Attitude Control. The SMEX-Lite ACS

software contains four different classes of

controller objects for controlling spacecraft

attitude. These objects contain the control laws

that compute torque and dipole commands,
which are sent to the IRWA and MTB

actuators. These controllers are executed based

on the current spacecraft mode and ACS
control mode. These classes are shown in

figure 6.

Mark Reid 12thAIAA/USU Conference on Small Satellites

[¢Con_on_r iii J

Figure 6: Attitude Control Classes

In spacecraft Boot Mode, the ACS task

contains a single controller. This controller is

used for sun acquisition and rate damping, and

is referred to as the Sun Acquisition or

Safehold controller. It is implemented in the

class 'cSunAcqController'. This controller uses

all of the reaction wheels to point the

spacecraft solar arrays toward the sun. It also

uses the magnetic torquer bars to establish and

maintain the system momentum bias while

reducing the spacecraft body rates. This Boot

Mode sun acquisition acts as the initial

acquisition controller immediately after launch

as well as a safety net in the event that the

Normal Mode software fails to perform as

expected.

Once the spacecraft is in Normal Mode, the

ACS provides the flexibility of additional
control modes. The three Normal Mode ACS

control modes are Sun Acquisition, Magnetic
Calibration, and Science Point. Each of these

modes has a corresponding controller,

cSunAcqController, cMagCalController, and
cSciencePointController. Yet another

controller object decides which of these

controllers will be used, based on the desired

ACS control mode. This is referred to as the

Normal Mode Control Processor, and is

implemented in cNormalModeCtrlProcessor.

Magnetic Calibration mode is used to fine-tune

the onboard magnetic compensation matrix.

This matrix is used by the TAM object to

correct TAM readings, which are corrupted by

the magnetic field produced by the MTBs.

During this calibration, the reaction wheels are

controlled to constant speeds, and a sequence

of dipole commands is sent to the MTBs. A

sequence of magnetometer readings is taken

and the updated magnetic compensation matrix

is computed. The duration of the calibration is

approximately six seconds.

The Science Point Control Mode is used to

perform mission specific science targeting.
The baseline for SMEX-Lite was taken from

WIRE's Zenith Sun Point (ZSP) mode. The

controller uses utility node, IRWA, and gyro

data to point the spacecraft +y-axis toward the

sun and the spacecraft +z-axis toward zenith.

During this mode, the ACS software also

performs attitude determination, as needed by
the ZSP controller. If a more robust Science

Point Controller is needed, only this one object
would need to be modified.

Failure Detection and Handling. The FDH

subsystem is responsible for executing ACS

performance and limit failure checks to

monitor the health and safety of the spacecraft.

The FDH subsystem was designed around the

FDH Check object. Each FDH Check object
contains the check limits, the actions which

will be taken if excessive failures occur, any

counters needed to keep track of successive

failures, and the logic to perform the check
itself.

Each FDH check object will, when called

upon, perform the check that determines if a
certain value is within its derived bounds.

Upon a failure, a check object will increment a

counter. If no failure is found, the counter is

reset to zero. If the counter exceeds the

objects' Maximum permitted error count, then

the object takes corrective action.

FDH failure actions are driven by mission

requirements. Upon a failure condition, some

FDH Checks may do nothing more than post an

event status message highlighting the issue for

Mark Reid 12 th AIAA/USU Conference on Small Satellites

review on the ground. Other FDH check

objects wi'll request a change of an ACS mode

to a lower, safer mode. Some checks execute a

MIL-STD-1553B bus command to power on a
reaction wheel. These actions are different for

each FDH check.

The FDH subsystem exists for both the Normal

and Boot mode. Each of the required FDH

checks is controlled through a centralized FDH

processor object. The Normal mode FDH

processor performs each check once per cycle

(10 Hz). Boot mode FDH is performed once

per boot mode cycle (2 Hz). Different checks

are performed for each of the modes. Each

check may have different constraints, different

tolerances, and may take different corrective

actions. Figure 7 shows the FDH checks which

are performed for SMEX-Lite.

Figure 7: FDH Check Classes

FDH checks, which are performed during Boot

Mode, include the following:

• Sun Pointing Constraint Check

• Utility Node Data Received Check

• Wheel Node Data Received Check

• Wheel Node Power Check

The Sun pointing constraint check ensures that

the spacecraft is oriented within limits relative

to the sun during sun acquisition mode. The

Utility Node data received check is made to

ensure data is still being received from the

utility node. Similarly, the Wheel Node data

received check ensures that data is still being

received from each reaction wheel. The Wheel

Node power check is made to ensure that the

each wheel is still powered on. If a wheel is

powered off for an extended number of cycles,

the FDH processor will issue a MIL-STD-

1553B bus command to power on the wheel.

In addition to the checks performed in Boot

Mode the Normal Mode FDH performs the

following checks:

• Gyro Power Check

• Excess Body Rate Check

• Gyro Node Data Received Check

• Inertial Reference Vectors Check

• Slew Execution Time Check

• Sun Pointing during ZSP Check

The gyro power check ensures that the correct

number of gyros is powered on for Normal

Mode operations. The excess body rate check

is made to ensure that the spacecraft body rate

does not exceed constraints. The Gyro Node
data received check verifies that data is still

being received from the gyro node. The
inertial reference vectors check determines if

all of the model validation flags are set TRUE,

indicating that the reference vectors received
from the AM task are valid. The slew

execution time check ensures that a spacecraft

slew command is completed within the allowed

time constraint. The Sun pointing during ZSP

check performs the additional check to ensure

that the spacecraft is oriented within limits

relative to the sun during Zenith Sun Pointing
mode.

ACS Foundation Class Library

The ACS software developed for the SMEX-

Lite prototype has been used to establish an

ACS Foundation Class Library and is now

serving as a baseline for future spacecraft. The

ACS Foundation Class Library consists of

objects designed for building Attitude Control

Software Systems. Many of the objects found

within this library are generic and can be

10
Mark Reid 12thAIAA/USU Conference on Small Satellites

reused without code modification. Some
objects, however, are mission unique and
would require some modification to meet
missionspecificrequirements.

Thegoal is for futureprojectsto reusemanyof
the abstractclassesand muchof the existing
ACS software framework. New mission
specific classescan be derived from existing
classesto provide reuse while allowing for
increasedflexibility. The ACS Foundation
Class Library should be viewed as an ever-
changingsetof classes,which grows asfuture
missionsare developed. Future development
efforts must wisely choosewhich areasof the
software should be reused and which areas
requiremodificationsor evennewclassesto be
developed.

Summary

The SMEX-Lite ACS software takes advantage

of the Object-oriented design principles of

encapsulation, inheritance, and polymorphism

to provide a robust and highly reusable

software library. This paper has detailed the

SMEX-Lite software design and functionality.

This software design provides a framework

which will increase software integrity and

reduce development time and cost. Future

spacecraft can draw on the resources developed

for SMEX-Lite to create a highly focused yet

flexible and reusable ACS system.

Acknowledgments

The authors of this paper wish to extend a

special thanks to Mark Anderson for getting

this paper started and for all of his leadership

during the SMEX-Lite development effort.

Thanks also go to those who have helped by

reviewing this paper, including Ken Barnes,

Tom Correll, Susanne Strege, and Miriam
Wennersten.

References

o Fennell, M., V. Untalan, Dr. M. Lee, "The

Attitude Control System Design for the

Wide-Field Infrared Explorer Mission,"

Proceedings of the 11 th Annual AIAA/USU

Conference on Small Satellites, September
1997.

2. Ibid.

3. Ibid.

. Barnes, K., C. Melhorn, T. Phillips, "The

Software Design for the Wide-Field

Infrared Explorer Attitude Control

System," To be published in the

proceedings of the 12 th Annual AIAA/USU

Conference on Small Satellites, September
1998.

5. Ford, W., W. Topp, Data Structures with

C++, Prentice-Hall Inc., 1996, p. 7.

6. Ibid., pp. 11-13.

7. Ibid., pp. 34-36.

Authors' Biographies

Mark Reid is currently the ACS Software Lead

Engineer for the SMEX-Lite spacecraft.
He has a B.A. in mathematics from

Western Kentucky University with a minor

in physics. He is pursuing a M.S. in

computer science from Johns Hopkins

University. In addition to his work on

SMEX-Lite, he has developed ACS flight

software for the Spartan program, and the

SAMPEX, RXTE, TRACE and WIRE

spacecraft.

William Hansell graduated from The

University of Maryland, College Park in

1989. His Aerospace software experiences

include developing ground support

11
Mark Reid 12th AIAA/USU Conference on Small Satellites

software and attitude control software. In

addition to developing ACS software for

NASA's SMEX-LITE project, Mr. Hansell
has worked on the MAP, WIRE, and

Spartan programs. He has also written data

management software for TRMM. Prior to

coming to NASA's Goddard Space Flight

Center in 1994, Mr. Hansell worked with

the US Navy, developing software for the

Naval Sea Systems Command.

Tom Phillips graduated from Davis & Elkins

College with a BSCS in 1986. His

Aerospace software experiences include

developing ground support software and
attitude control software. In addition to

developing ACS software for NASA's

SMEX-L1TE project, Mr. Phillips has

worked on NASA's TRMM, RXTE, WIRE,

and Spartan programs. He has also written
hardware verification software for the Air

Force STEP program. Prior to coming to

NASA's Goddard Space Flight Center in

1992, Mr. Phillips worked with the US

Navy, developing shore based
communication software

12
Mark Reid 12t_AIAA/USU Conference on Small Satellites

THE IMPLEMENTATION OF SATELLITE ATTITUDE CONTROL SYSTEM
SOFTWARE USING OBJECTORIENTED DESIGN

Mark O. Anderson,Mark Reid
NASA GoddardSpaceFlight Center

Greenbelt,Maryland

DerekDrury, William Hansell,Tom Phillips
theHammersCompany
Greenbelt,Maryland

Abstract

NASA established the Small Explorer (SMEX) program in 1988 to provide frequent

opportunities for highly focused and relatively inexpensive space science missions that

can be launched into low earth orbit by small expendable vehicles. The development

schedule for each SMEX spacecraft was three years from start to launch. The SMEX

program has produced five satellites; Solar Anomalous and Magnetospheric Particle

Explorer (SAMPEX), Fast Auroral Snapshot Explorer (FAST), Submillimeter Wave

Astronomy Satellite (SWAS), Transition Region and Coronal Explorer (TRACE) and

Wide-Field Infrared Explorer (WIRE). SAMPEX and FAST are on-orbit, TRACE is

scheduled to be launched in April of 1998, WIRE is scheduled to be launched in

September of 1998, and SWAS is scheduled to be launched in January of 1999. In each

of these missions, the Attitude Control System (ACS) software was written using a

modular procedural design. Current program goals require complete spacecraft

development within 18 months. This requirement has increased pressure to write

reusable flight software. Object-Oriented Design (OOD) offers the constructs for

developing an application that only needs modification for mission unique requirements.

This paper describes the OOD that was used to develop the SMEX-Lite ACS software.
The SMEX-Lite ACS is three-axis controlled, momentum stabilized, and is capable of

performing sub-arc-minute pointing. The paper first describes the high level requirements

which governed the architecture of the SMEX-Lite ACS software. Next, the context in

which the software resides is explained. The paper describes the benefits of

encapsulation, inheritance and polymorphism with respect to the implementation of an

ACS software system. This paper will discuss the design of several software components

that comprise the ACS software. Specifically, Object-Oriented designs are presented for

sensor data processing, attitude control, attitude determination and failure detection. The

paper addresses the benefits of the OOD versus a conventional procedural design. The

final discussion in this paper will address the establishment of the ACS Foundation Class

(AFC) Library. The AFC is a large software repository, requiring a minimal amount of

code modifications to produce ACS software for future projects, saving production time

and costs.

3/17/98 12 _' Annual AIAAJUSU Conference on Small Satellites

